0:00:43
Views: 1090
0:07:07
Views: 2302
0:17:01
Views: 1346
0:00:59
Views: 1709

## Our Projects

Meaning Of Work
Select Category:
0:02:14
1816 views
From: paksc
0:01:52
1181 views
From: paksc
0:01:33
923 views
From: paksc
0:04:27
784 views
From: paksc
0:04:27
773 views
From: paksc
0:02:14
794 views
From: paksc
0:03:51
0:01:45
739 views
From: paksc
0:01:51
631 views
From: paksc
0:03:28
2072 views
From: paksc
0:05:42
802 views
From: paksc
0:02:38
745 views
From: paksc
0:05:32
718 views
From: paksc
0:01:55
747 views
From: paksc
0:05:39
655 views
From: paksc
0:01:08
936 views
From: paksc
0:06:45
760 views
From: paksc
0:01:51
914 views
From: paksc
0:01:36
961 views
From: paksc
0:00:50
663 views
From: paksc
See all 62 videos
Views: 827
From: paksc
Category: Physics Lessons, Tutorials and Physics Help
Duration: 0:00:51
Tags: Meaning, Of, Work
Video Description: Check us out at http://www.tutorvista.com//videos
Work, in physics and mechanics, transfer of energy by a force acting to displace a body. Work is equal to the product of the force and the distance through which it produces movement. Although both force force, commonly, a "push" or "pull," more properly defined in physics as a quantity that changes the motion, size, or shape of a body. Force is a vector quantity, having both magnitude and direction.
Displacement are vector U [−3,1] and V [5,2], one can add their corresponding components to find the resultant vector R [2,3], or one can graph U and V on a set of coordinate axes and complete the parallelogram formed with U and V. quantities, having both magnitude and direction, work is a scalar quantity, having only magnitude. If the force acts in a direction other than that of the motion of the body, then only that component of the force in the direction of the motion produces work. Thus when a 5-lb (22.4-newton) force pulls a body 10 ft (3 m), it does 50 foot-pounds (67.2 meter-newtons) of work. If a force acts on a body constrained to remain stationary, no work is done by the force. Even if the body is in motion, the force must have a component in the direction of motion. Thus, any centripetal force, such as the sun's gravitational pull on the earth, does no work because it acts at right angles to the motion and has no component in that direction (see centripetal force and centrifugal force centripetal force and centrifugal force, action-reaction force pair associated with circular motion .
When there is no friction friction, resistance offered to the movement of one body past another body with which it is in contact. In certain situations friction is desired. Without friction the wheels of a locomotive could not "grip" the rails nor could power be transmitted by belts and a force acts on a body, the work done by the force is equal to the increase of the kinetic and potential energy of the body, since all the energy expended by the agency exerting the force must be gained by the body. If frictional forces are present, then some of the work must go to overcome friction and appears finally in the form of heat energy. A simple machine machine, arrangement of moving and stationary mechanical parts used to perform some useful work or to provide transportation. From a historical perspective, many of the first machines were the result of human efforts to improve war-making capabilities; the term
is a device for converting work into another form of energy. For example the jackscrew converts an input of work done on the machine to raise the load. The efficiency of a machine, which is defined as the ratio of the work output to the work input, is always less than one, since some of the input is invariably wasted in overcoming friction. The element of time does not enter into the computation of work; the time rate of doing work is called power power, in physics, time rate of doing work or of producing or expending energy

Refresh

0:16:49
Views: 637
0:02:17
Views: 575
0:03:17
Views: 298
0:05:00